Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers and Their Parallel Implementations
نویسندگان
چکیده
It is well known that the Lanczos process suffers from loss of orthogonality in the case of finite-precision arithmetic. Several approaches have been proposed in order to address this issue, thus enabling the successful computation of approximate eigensolutions. However, these techniques have been studied mainly in the context of long Lanczos runs, but not for restarted Lanczos eigensolvers. Several variants of the explicitly restarted Lanczos algorithm employing different reorthogonalization strategies have been implemented in SLEPc, the Scalable Library for Eigenvalue Computations. The aim of this work is to assess the numerical robustness of the proposed implementations as well as to study the impact of reorthogonalization in parallel efficiency. Topics. Numerical methods, parallel and distributed computing.
منابع مشابه
A Comparison of Numerical Implementations of the Eigenstate Expansion Method for Quantum Molecular Dynamics Simulations
We investigate the efficient computation of a few of the lowest eigenvalues of a symmetric eigenvalue problem occurring in quantum dynamical molecular simulations. The large sparse system of order n is highly structured such that its multiplication with a vector costs O(n logn) floating point operations only. We compare a number of eigensolvers: subspace iteration, two variants of the restarted...
متن کاملSome new restart vectors for explicitly restarted Arnoldi method
The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملParallel Efficiency of the Lanczos Method for Eigenvalue Problems
Two of the commonly used versions of the Lanczos method for eigenvalues problems are the shift-and-invert Lanczos method and the restarted Lanczos method. In this talk, we will address two questions, is the shift-and-invert Lanczos method a viable option on massively parallel machines and which one is more appropriate for a given eigenvalue problem?
متن کاملA Case for a Biorthogonal Jacobi-Davidson Method: Restarting and Correction Equation
We propose a biorthogonal Jacobi-Davidson method (biJD), which can be viewed as an explicitly biorthogonalized, restarted Lanczos method, that uses the approximate solution of a correction equation to expand its basis. Through an elegant formulation, the algorithm allows for all the functionalities and features of the Jacobi-Davidson (JD), but it also includes some of the advantages of the nons...
متن کامل